NATO Flight Surgeons Conference, Garmisch, 24 Mar 22

RAF AIRCREW FATIGUE: Assessment, Management, Research

Wg Cdr Ian Mollan, Consultant Occupational Medicine Physician

Disclosure

Clearance number 187

 Any views or opinions that may be expressed represent those of the presenter, and not necessarily that of Her Majesty's Government, Ministry of Defence or the Royal Air Force.

 I may discuss specific products, but that does not confer endorsement

I have no financial interest in this material
I self-funded to be at this Conference.

Scope

 Introduction Assessment • What is fatigue Management Modelling, Aeromedical advice Research Current and future research Other technologies

What is fatigue

• Fatigue:

"A physiological state of reduced mental or physical performance capability resulting from sleep loss or extended wakefulness, circadian phase, or workload (mental and/or physical activity) that can impair a crew member's alertness and ability to safely operate an aircraft or perform safety related duties" [ICAO]

Introduction

Familiar with the hazards of fatigue
Military risks:

Disturbed sleep
Circadian disruption – deployment
Circadian mismatch – night VULs
Greater with advent of steath.

Introduction (2)

Fatigue reduction – force preserver
Active fatigue mitigation:

Higher performance
Increased productivity
Fewer errors, incidents and accidents.

Introduction (3)

Effective and safe flight scheduling
Fatigue avoidance guidance
Assurance with validated tools

Introduction (4) – Despite this....

• Reports of fatigue in D-ASORs Adverse comments about fatigue: Types of flying / platforms Operational locations Almost all experienced aircrew report falling asleep on duty • Comd(s) interest in fatigue.

Introduction (5)

 ICAO SARPs support 2 distinct approaches to fatigue management: Prescriptive Flight and duty time limits – Regulator defined Performance-based • Operator develops and implements Fatigue Risk Management System (FRMS), approved by the Regulator.

Introduction (6)

- Key points from FRMS:
 - Need to assess (measure) fatigue, and
 - Safety Performance Indicators:
 - Metrics from: Roster, Fatigue Reporting, Subjective Fatigue Survey, Subjective Alertness/Sleepiness Assessment, Subjective Sleep/Wake Diary, Objective Performance, Objective Sleep, Fatigue Model.
- No RA requirement to assess, or report SPIs
 Therefore, Military rules are prescriptive.

Fatigue guidance sources

- MAA RA2345 [link] Management of aircrew fatigue
- MAA RA3207 [ink] Controller fatigue management
 - AP8000 [link] RAF Safety Management Policy
 - Lflt 8213 [link] Fatigue Management
- Group Air Staff Orders (GASOs) Various
- ICAO [link] Suite of Fatigue Management Manuals
- EWTD, EASA FTL
- HSE FRI [link] and calculator v2.3 [link]
- DSTL Sleep Education on DLE [link]

Assessing / Measuring fatigue

Fatigue scales Biomathematical models

Evaluating fatigue [IATA]: Common Protocol for Minimum Data Collective Variables

Level	Measure	
1	Background Questionnaire, or Subjective survey assessment about operations	
2	Sleepiness or alertness ratings, e.g. KSS or Samn-Perelli Fatigue Scale	
3	Sleep/activity and duty logs	
4	Actigraphy	
5	Objective Performance Testing	

Samn-Perelli Scale (SPS)

Level	Measure	
1	Fully alert, wide awake	
2	Very lively, responsive, but not at peak	
3	OK, somewhat fresh	
4	A little tired, less than fresh	
5	Moderately tired, let down	
6	Extremely tired, very difficult to concentrate	
7	Completely exhausted, unable to function effectively	
CUBIES -		

Subjective Fatigue Assessment: Karolinska Sleepiness Scale (KSS)¹

Level	Measure
1	Extremely alert
2	Very alert
3	Alert
4	Rather alert
5	Neither alert nor sleepy
6	Some signs of sleepiness
7	Sleepy, but no effort to keep awake
8	Sleepy, but some effort to keep awake
9	Very sleepy, great effort to keep awake, fighting sleep

10 Extremely sleepy, can't keep awake

1 Akerstedt T, Gillberg M. (1990). Subjective and objective sleepiness in the active individual. International Journal of Neuroscience, 52, 29–37

Figure 1—Neurobehavioral responses to varying doses of daily sleep. Four different neurobehavioral assays served to measure cognitive performance capability and subjective sleepiness. Each panel displays group averages for subjects in the 8 h (\Diamond), 6 h (\Box), and 4 h (\bigcirc) chronic sleep period conditions across 14 days, and in the 0 h (\blacksquare) sleep condition across 3 days. Subjects were tested every 2 h each day; data points represent the daily average (07:30–23:30) expressed relative to baseline (BL). Panel A shows psychomotor vigilance task (PVT) performance lapses; panel B shows Stanford Sleepiness Scale (SSS) self-ratings; panel C shows digit symbol substitution task (DSST) correct responses; and panel D shows serial addition/subtraction task (SAST) correct responses per min. Upward corresponds to worse performance on the PVT and greater sleepiness on the SSS, and to better performance on the DSST and the SAST. The curves through the data points represent statistical non-linear model-based best-fitting profiles of the response to sleep deprivation (equation (1)) for subjects in each of the four experimental conditions. The mean \pm s.e. ranges of neurobehavioral functions for 1 and 2 days of 0 h sleep (total sleep deprivation) are shown as light and dark gray bands, respectively, allowing comparison of the 3-day total sleep deprivation condition and the 14-day chronic sleep restriction conditions. For the DSST and SAST, these gray bands are curved parallel to the practice effect displayed by the subjects in the 8 h sleep period condition, to compensate for different amounts of practice on these tasks.

Why we cannot use subjective self-ratings to determine fatigue.

Van Dongen et al. The Cumulative Cost of Additional Wakefulness: Dose-Response Effects on Neurobehavioral Functions and Sleep Physiology From Chronic Sleep Restriction and Total Sleep Deprivation. Sleep. Vol 26(2); 2003.

Subjective Fatigue Assessment: Models (1)

System for Aircrew Fatigue Evaluation (SAFE)
Output is KSS

- Fatigue Assessment Tool by InterDynamics (FAID)
 Output is KSS
- Boeing Alertness Model (BAM) aka Jeppesen Crew Alert[®]
 - Output is KSS

Objective Fatigue Assessment: Model

- Sleep, Activity, Fatigue, and Task Effectiveness model and Fatigue Avoidance Scheduling Tool (SAFTE-FAST)
 - Output is a numerical value (0-100)
 - Correlates with PVT
 - High values = less fatigue
 - Value at 70, and below = perform as well on PVT as someone who has BAC 80 mg%
 - Statistically significant increased chance of road, rail transportation safety accident (≤ 70)

Objective Fatigue Assessment: FAST Sleep time equivalence (sustained) 7 hrs 6¹/₂ hrs 8 hrs 51/2 hrs 8h 95 Reaction time 90 **Reaction time** 85 95 80 performance performance slowed slowed 85 75

'/ h

85

Objective Fatigue Assessment: FAST Sleep time equivalence (sustained) 5 hrs 41/2 hrs 51/2 hrs 4 hrs 8h 8 75 65 Reaction time Reaction time 75 65 70 significantly significantly slowed slowed 65 55 55

Hursh et al. Fatigue Models for Applied Research in Warfighting. Aviation, Space, and Environmental Medicine March 2004;75(Supplement 1): A44-A53.

Sleep Dose Response Study – Experimental & Recovery Days - WRAIR Data

Fig. 7. Likelihood of lapses on the PVT is a linear function of the inverse of effectiveness predicted by the SAFTE Model optimized for PVT speed. These data are based on the results of the sleep dose response study (6).

Modelling / Aeromedical Advice

Fatigue Modelling product

C-17 BZZ–MSP–BOI–MSF–BZZ

Provided on behalf of RAFCAM by: <u>ian.mollan863@mod.gov.uk</u> <u>imogen.Jenner100@mod.gov.uk</u>

Aviation Medicine Matters

16 Nov 2020 v1

✓ File Edit View Graphical Display Model Window Help

🗅 📂 🖬 🕒 🎒 🛗 🍉 💭 🔳 🖩 🖉 🔽 🦳 🕀 🔍 👰 🚇

16/11/2020

✓ File Edit View Graphical Display Model Window Help

D 😂 🖬 Pb 🚑 🛗 🍉 💭 🔳 🖩 🖉 🔽 🥂 🔍 🍭 🌘 🔔

22:34 (7. 16/11/2020

0

✓ File Edit View Graphical Display Model Window Help

Blood Alcohol Equivalence (%)

0.05

0.08

9

P

60

Work Sleep

Light

10

4

Base 💌

12

18

Proposed C-17 Op TORAL Current Schedule (Crew 1 & 2) v4

Provided on behalf of RAFCAM by: ian.mollan863@mod.gov.uk jack.outram100@mod.gov.uk andrew.pryor194@mod.gov.uk AirCOSSpt-CAM-AMW-AIHF-GpMbx@mod.gov.uk 22 Apr 21 v4.0

Aviation Medicine Matters

Current Schedule

Arr			D	ep
L	L Z		Z	L
		BZZ	0730	0830
1530	1230	AKT	1530	1830
0310	2240	KBL	1530	2000
0120	2220	AKT	0120	0420
0750	0650	BZZ		

Crew 1:

Day 1- Deadhead Voyager from BZZ to AKT Day 2- Crews C-17 from AKT to KBL

Day 3- Crews C-17 from KBL to AKT

Day 4- Deadhead C-17 from AKT to BZZ

Crew 2:

Day 1- Crews C-17 from BZZ to AKT

Day 2- Rest

Day 3- Rest

Day 4- Crews C-17 from AKT to BZZ

V.3 Adjustments:

- 1. 90 minute check-in
- 2. Sleep quality improved from Poor to Fair (AKT ONLY)
- 3.1&2 Combined
- 4. Deadhead flight times corrected

▶ FAST Version TRIAL 3.3.01TP - [20210422 C-17 Op TORAL Current [Crew 1]: 00:08 S O Eff:89.04]

✓ File Edit View Graphical Display Model Window Help

- FAST Version 3.3.01T [20210419 C-17 Op TORAL current [CREW 2].fxm: 08:23z A O Eff:85.30 34° 35' N 32° 59' E]
- 🔨 File Edit View Graphical Display Model Window Help

Effect of reducing check-in time to 90 min

FAST Version TRIAL 3.3.01TP - [20210421 c-17 op toral current [crew 1]ci: 00:01 S O Eff:89.24]

∧ File Edit View Graphical Display Model Window Help

- 0 × - • ×

∧ File Edit View Graphical Display Model Window Help

Effect of improving accommodation in AKT

FAST Version TRIAL 3.3.01TP - [20210421 C-17 Op TORAL Current [Crew 1]SQ.fxm: 00:01 S O Eff:89.24]

✓ File Edit View Graphical Display Model Window Help

∧ File Edit View Graphical Display Model Window Help

Effect of 90 min check-in for deadheading crews, and improving accommodation in AKT

FAST Version TRIAL 3.3.01TP - [20210421 C-17 Op TORAL Current [Crew 1]COMB.fxm: 00:14 S O Eff:88.88]

∧ File Edit View Graphical Display Model Window Help

- 0 × - 8 ×

FAST Version TRIAL 3.3.01TP - [20210421 C-17 Op TORAL Current [Crew 2]COMB: 00:08 S O Eff:89.04]

∧ File Edit View Graphical Display Model Window Help

Effect of delaying AKT – BZZ departure

✓ File Edit View Graphical Display Model Window Help

∧ File Edit View Graphical Display Model Window Help

- 0 × -8×

Research

Overview

C-17 Fatigue project, and Future Research

AOC 2Gp Fatigue research

- [AOC 2Gp]: Objective measurement of fatigue:
 Quantify RtL in air and ground crew:
 C-17 Data collection complete; in analysis (wait FDM data)
 A330 Being designed
 C-130
 BAe-146
 A400M Being designed
 - Support personnel incl AGE, Movs, Ops

C-17 Fatigue Project

Measurement of fatigue in C-17 pilots: Assessment of Operational Risk Matrix efficacy and relationship to Flight Data Monitoring parameters

Introduction

• Fatigue is the number 1 air safety risk on the C-17 platform

Permissive Crew Duty regulations
Proscriptive Rules

• Trans-meridian travel

Methods (1)

 Data collected: 27 Feb – 7 Jun 21 • This longitudinal study objectively measured fatigue in RAF C-17 pilots by actigraphy • It analysed its' relationship with: • The existing Squadron ORM • A separate, study ORM • Samn-Perelli Scale at Top of Descent Specified Flight Data Monitoring (FDM) parameters

Methods (2)

• Primary aims:

- Are C-17 pilots fatigued, as measured using actigraphy and the SAFTE-FAST model?
 - a. Measure effectiveness by asking participants to wear an actigraphy device continuously during the study.
 - b. Calculate effectiveness during flying duties and describe the data.

Methods (3)

- 2. How does the current Squadron ORM and the study ORM correlate with the objective measure of fatigue?
 - a. Fatigue related questions from the current Sqn ORM will be evaluated with the calculated effectiveness score at the time of the ORM completion.
 - b. All questions on the proposed ORM will be evaluated with the calculated effectiveness score at the time of the ORM completion.

Methods (4)

- 3. Is there a valid relationship between objective measure of fatigue and FDM data?
 - a. Effectiveness at time of approach (landing) will be calculated and evaluated against specific FDM data points, including:
 - (1) Deviation from optimal landing speed.
 - (2) Vertical acceleration on touchdown.
 - (3) Depth of landing.
 - (4) Time taken to select reverse thrust.

Methods (5)

Results (1)

Response rates: Pilot participation: 29 / 42 (69%) Sector participation: 261 / 436 (60%)

PILOT SECTOR PARTICIPATION	One/both	Both	One	None
Number of sectors	261 (59.9)	78 (17.9)	183 (42)	174 (40.1)

*All numbers presented as n(%).

Results (2) – Demographic data

PARTICIPANTS	Participant
Male	28 (97)
Age, mean(sd)	36.4 (5.6)
Exec role	10 (34)
Live in	0 (0)
Small children at home	16 (55)
Service length (vrs), median(IQR)	13.5 (11.3-17.9)
Flight time (hrs), median(IQR)	
Flight time total	2900 (2100-3800)
Flight time military	2700 (2030-3800)
Flight time military multi-engine	2050 (900-3000)
Flight time on C-17	1300 (600-2000)

Results (3) – Flight Rotations

FLIGHT ROTATIONS

Base	UK	Europe	BME	USA	Africa	Total
BZZ	4 (3)	34 (21)	24 (15)	24 (15)	16 (10)	102 (64)
(for forward basing) -		-	8 (5)	-	-	8 (5)
BZZ sub-total	4 (3)	34 (21)	32 (20)	24 (15)	16 (10)	110 (69)
Forward based						
DQM	-	-	46 (29)	-	-	46 (29)
NHD	-	-	3 (2)	-	-	3 (2)
Forward based	sub-total	-	49 (31)	-	-	49 (31)
Total	4 (3)	34 (21)	81 (51)	24 (15)	16 (10)	159 (100)
$\Delta \parallel \mu_{\rm comb}$ are presented as $\mu(0/1)$						

*All numbers presented as n(%).

Results (4) – Sectors flown per rotation

*								
SECTORS FLOWN PER ROTATION								
Base	UK	Europe	BME	USA	Africa	Total		
BZZ	3 (2 – 4)	2 (2 – 3)	4 (2 – 6)	3 (1 - 6)	3 (2 – 4)	3 (1 – 6)		
Forward based	l							
DQM	-	-	2 (2 – 4)	-	-	2 (2 – 4)		
NHD	-	-	2 (2 – 2)	-	-	2 (2 – 2)		
Forward based	l sub-total	-	2 (2 – 4)	-	-	2 (2 – 4)		
Total	3 (2 – 4)	2 (2 – 3)	3 (2 – 6)	3 (1 - 6)	3 (2 – 4)	3 (1 – 6)		
*All numbers pro	sented as m	ean(range)	1		I			

Results (5) – Effectiveness at TOD and landing

EFFECTIVENESS AT TOP OF DESCENT AND LANDING

(n=261)	UK	Europe	BME	USA	Africa	Total		
Top of	78	88	85	85	86	85		
Descent (TOD)	(77 – 79)	(84 – 91)	(77 -91)	(77 – 91)	(80 – 85)	(77 – 91)		
Landing	77	85	85	85	85	85		
	(76 – 79)	(76 – 90)	(76 – 90)	(76 – 90)	(76 – 90)	(76 – 90)		
*All numbers pres	All numbers presented as median(IQR).							

Results (6) – No of landings and effectiveness

NUMBER OF LANDINGS AND EFFECTIVENESS ON LANDING

				-		
(n=261)	UK	Europe	BME	USA	Africa	Total
Safe (>77%)	2 (1)	40 (15)	81 (31)	42 (16)	26 (10)	191 (73)
Sub-optimal (70 – 77%)	1 (0)	1 (0)	32 (12)	3 (1)	6 (2)	43 (16)
Unsafe (<70%)	0 (0)	0 (0)	21 (8)	4 (2)	2 (1)	27 (10)
Total	3 (1)	41 (16)	134 (51)	49 (19)	34 (13)	261 (100)
*All numbers pres	sented as n(^(%)				

OROYAL AIRFORCE

Results (7) – SPS at TOD

Samn-Perelli Scale and FAST Effectiveness at Top of Descent

AIRFORCE

Results (8) – Existing Sqn ORM efficacy

Existing Sqn ORM Scores and Effectiveness

AIRFORCE

Callsign		Op/Ex	Transop		
Airfields		na an ann ann ann ann	Dates]
Crew					7
CAP		1		1 .	٦ .
CO		····		· · · · · · · · · · · · · · · · · · ·	1
ALM					1
GE				Lensens one on	1
SVC					1
NISK Fac	1013		Contraction of the Contraction of the Contraction	1. 经营销运行的 化合合物 计目的 网络马马	N
Mission	1 Task complexity [1	1] 1	Low	Moderate	High
Mission Timings	1 Task complexity [1	1) 1) 1) 1) 1) 1) 1) 1) 1) 1)	Low	Moderate	High
Mission Timings	1 Task complexity [1 2 Task crew-in time	1] (Local) [2]	Low 0500 – 1459L	Moderate 1500-0459L	High
Mission Timings	1 Task complexity [1 2 Task crew-in time 3 Consecutive opera	1] (Local) [2] ating days	Low 0500 - 1459L < 5	Moderate 1500-0459L 5-6	High
Mission Timings	1 Task complexity [1 2 Task crew-In time 3 Consecutive opera 4 Planned CDT with	[] (Local) [2] ating days in 1h of max CDT	Low 0500 - 1459L < 5 No	Moderate 1500-0459L 5-6 Yes	High > 7
Mission Timings	1 Task complexity [1 2 Task crew-in time 3 Consecutive opera 4 Planned CDT with 5 Number of Op leg	L] (Local) [2] ating days in 1h of max CDT s in crew day	Low 0500 - 1459L < 5 No < 3	Moderate 1500-0459L 5-6 Yes 3-4	High > 7 :::::::::::::::::::::::::::::::::::
Mission	1 Task complexity [1 2 Task crew-In time 3 Consecutive opera 4 Planned CDT with 5 Number of Op leg 6 Take-off or landing	L] (Local) [2] ating days in 1h of max CDT s in crew day g in WOCL [3]	Low 0500 - 1459L < 5 No < 3 No	Moderate 1500-0459L 5-6 Yes 3-4 Yes	High >7 >5
Mission Timings Environr	1 Task complexity [1 2 Task crew-In time 3 Consecutive opera 4 Planned CDT with 5 Number of Op leg 6 Take-off or landing nent	L] (Local) [2] ating days in 1h of max CDT s in crew day g in WOCL [3]	Low 0500 - 1459L < 5 No < 3 No	Moderate 1500-0459L 5-6 Yes 3-4 Yes	High > 7 > 5
Mission Timings Environr	1 Task complexity [1 2 Task crew-in time 3 Consecutive opera 4 Planned CDT withi 5 Number of Op leg 6 Take-off or landin nent 7 Threat assessmen	L] (Local) [2] ating days in 1h of max CDT s in crew day g in WOCL [3]	Low 0500 1459L < 5 No < 3 No Low/Moderate	Moderate 1500-0459L 5-6 Yes 3-4 Yes Substantial	High > 7 > 5 Severe
Mission Timings Environr	1 Task complexity [1 2 Task crew-in time 3 Consecutive opera 4 Planned CDT withi 5 Number of Op leg 6 Take-off or landin nent 7 Threat assessmen 8 En-route location	L] (Local) [2] ating days in 1h of max CDT s In crew day g in WOCL [3] t t mission support [4]	Low 0500 – 1459L < 5 No < 3 No Low/Moderate Meets Requirement	Moderate 1500-0459L 5-6 Yes 3-4 Yes Substantial Below Requirement	High > 7 > 5 Severe

a de la comp

3	Consecutive operating days	> >	0-0	21	Ų
4	Planned CDT within 1h of max CDT	No	Yes		0
5	Number of Op legs in crew day	< 3	3-4	>5	0
6	Take-off or landing in WOCL [3]	No	Yes	这一次的 是这种意义在197	0
invironme	ent in attack to attack to				SECTION AND
7	Threat assessment	Low/Moderate	Substantial	Severe	0
8	En-route location mission support [4]	Meets Requirement	Below Requirement	COMPANY AND A DESCRIPTION	0
9	En-route language difficulties	No	Yes		1
10	Airfield complexity [5]	Low	Moderate	High	2
11	Night departures/arrivals in crew day	< 3	3-5	>6	1
12	NVG take-off or landing	No	Yes		0
13	Bird/wildlife hazard	Low	Moderate	High	0
14	En-route complexity and risks [6]	Low	Moderate	High	0
rew/Airc	raft and the second states and the			e and a start of the second second	also de la
15	Number of LCR Crew Members [7]	0	1-2 .	>3	1
16	Pilot Composition	CAP/CO	CAP/CAP	TANK BURNELS	. 1
17	Aircraft Captain C-17 PIC hrs	≥ 500 hours	< 500 hours	A CARLES AND COMPANY	0
18	Co-pilot C-17 hrs	≥ 500 hours	< 500 hours		1
19	ALM C-17 hrs	≥ 500 hours	< 500 hours	Destroy of the second second	0
20	Sectors by Captain in last 31 days	≥4	< 4		0
21	Sectors by Co-pilot in last 31 days	≥4	< 4		0
22	Sectors by ALM in last 31 days	≥ 4	< 4		0
23	Pilot MCT currency (3 months)	Both	One	Neither	0
heatre Ta	sk Recency				
24	Captain	≤ 90 days	> 90 days	· · · · · · · · · · · · · · · · · · ·	0
25	Co-pilot	≤ 90 days	> 90 days	这些意义是是来。 在这些时	0
26	ALM	≤ 90 days	> 90 days	和学家的 医长线的 机压制的	0
Vorldwide	e AT				
27	Captain previous similar mission [8]	< 6 months	6-18 months	> 18 months	2
28	Co-pilot previous similar mission	< 6 months	6-18 months	> 18 months	2

Score

Total

的新闻的11

0

Discussion – Existing Sqn ORM efficacy

2 Task crew-in time (Local) [2]	0500 - 1459L	1500-0459L	和特殊的情况的思想的问题。
3 Consecutive operating days	< 5	5-6	>7
4 Planned CDT within 1h of max CDT	No	Yes	建筑的新闻标识的 和图
5 Number of Op legs in crew day	< 3	3-4	>5
6 Take-off or landing in WOCL [3]	No	Yes	(1) · · · · · · · · · · · · · · · · · · ·

Discussion – Existing Sqn ORM efficacy

Q	Q	p value
1	Task complexity	0.32
2	Task crew-in time	0.06
3	Consecutive operating days	1.00
4	Planned CDT within 1h of max CDT	0.001
5	Number of op legs in crew day	0.81
6	Take-off or landing in WOCL	0.003

Discussion - FDM

Wait for AsMA presentation in Reno
 Mon 23 Mar 22 1600 hrs
 TUSCANY B
 SLIDE: Fatigue in Military and Commercial Aviation

Discussion

- Effectiveness cut-offs are scientifically sound
- Re-purpose the existing Sqn ORM (questions and 'math')
 - Re-measure to assess efficacy
- Can we engineer out the problems, without restricting FTL
 - Worrying sectors e.g. WOCL departures / arrivals
 - Modelling as standard and modelling within BOCS?
 - MOG issues (foreign airfield constraints)
 - Move towards a FRMS
 - Improvements to sleep
 - Military accommodation, other aids

Recommendations

Procure automated fatigue analysis system
DSCOM, 2Gp, BZZ ASC – reviewed 4 products.
Scalable (desktop // integrated into BOCS)

- Coherence AtRS
- Cost minimal
- Confirm military 'real-world' by measurement

Future Projects and Research

Platform	Problem / Tool	Level
RPAS (Watchkeeper)	Operating shift length without break, total CDT – Optalert	MSc
A400M (Atlas)	Fatigue assessment, ORM efficacy (FAST/SAFTE-FAST)	
RPAS (Desert Hawk)	CDT require 6 hrs sleep pre-flight. Preliminary assessment – TBD	
Hawk T2	ATC -> Station-wide ORM. Have flight performance data (training) - FAST	
(pan platform)	Temazepam / Melatonin use	
RW	Fatigue assessment, ORM efficacy (FAST/SAFTE-FAST)	MSc
A330 MRTT (Voyager)	Fatigue assessment, ORM efficacy (FAST/SAFTE-FAST)	

"Drowsy / fatigue detection system" (Optalert[™]) Glasses: blinks Duration of, and Amplitude-Velocity ratio

• Niche: **Onset** of fatigue

Summary

 Introduction Assessment • What is fatigue Management Modelling, Aeromedical advice Research Current research, future projects and research

ian.mollan863@mod.gov.uk

© CROWN COPYRIGHT / MINISTRY OF DEFENCE 2022 Published with the permission of the Controller of Her Majesty's Stationery Office Clearance number 187